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Abstract. In this paper, we study 1-space bounded 2-dimensional bin
packing and square packing. A sequence of rectangular items (square
items) arrive one by one, each item must be packed into a square bin
of unit size on its arrival without any information about future items.
When packing items, 90◦-rotation is allowed. 1-space bounded means
there is only one “active” bin. If the “active” bin cannot accommodate
the coming item, it will be closed and a new bin will be opened. The
objective is to minimize the total number of bins used for packing all
items in the sequence.
Our contributions are as follows: For 1-space bounded 2-dimensional bin
packing, we propose an online packing strategy with competitive ratio
5.06. The lower bound of the competitive ratio is proved to be 3.17.
Moreover, we study 1-space bounded square packing, where each item is
a square with side length no more than 1. A 4.3-competitive algorithm
can be achieved, and the lower bound of the competitive ratio is shown
to be 2.94. All these bounds surpass the previous results.

1 Introduction

Bin packing is one of the most fundamental problems in computer science. In
the online fashion of bin packing, a sequence of items arrive over time, each item
must be packed into a bin on its arrival without any information about future
items. The objective is minimizing the number of used bins for packing all items
in the sequence.

Roughly speaking, the problem of online bin packing has two models: the
unbounded space model and the bounded space model. In the unbounded space
model, any bin can be used to pack the coming item if its empty space is large
enough. In the bounded space bin packing, only “active” bins can be used to
pack item, and the number of “active” bins is bounded by some constant. If all
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“active” bins cannot accommodate the coming item, one of such bins will be
closed and a new bin will be opened to pack the coming item.

Our focus in this paper is the bounded space 2-dimensional bin packing, and
the number of “active” bins is restricted to be one. We call it 1-space bounded 2-
dimensional bin packing. In this variant, the coming item is packed either in the
“active” bin, or in a new “active” bin after the closure of the previous “active”
bin. The closed bin cannot be used to pack items any more. In 1-space bounded
bin packing, 90◦ rotation on item is allowed, otherwise, the performance ratio
will be unbounded [8]. We also consider 1-space bounded square packing, where
each item is a square with side length no more than 1. Our target is to find
packing strategies for 1-space bounded 2-dimensional bin packing and square
packing to minimize the number of used bins.

To measure the performance of the 1-space bounded 2-dimensional bin pack-
ing, we use the asymptotic competitive analysis, which is often used for online
problems. For a sequence σ of items, let A(σ) and OPT (σ) denote the number
of used bins by the online packing strategy A and the offline optimal algorithm
OPT , respectively. The asymptotic competitive ratio of the online algorithm A
is defined to be

R∞
A = lim

k→∞
sup
σ
{ A(σ)

OPT (σ)
|OPT (σ) = k}.

Related works:
The online bin packing has been studied for more than thirty years. For one-

dimensional online bin packing, Johnson et al. [12] showed that the First Fit
algorithm (FF) has an asymptotic competitive ratio of 1.7. Yao [17] improved
the algorithm to obtain a better upper bound of 5/3. Lee et al. [13] introduced the
class of Harmonic algorithms, and showed that an asymptotic competitive ratio
of 1.63597 is achievable. The best known upper bound is 1.58889, which was given
by Seiden [14]. As for the lower bound of the competitive ratio of one dimensional
bin packing, Yao [17] showed that no online algorithm can have an asymptotic
competitive ratio less than 1.5. The best known lower bound is 1.54014 [16]. For
two-dimensional online bin packing, Seiden and van Stee [15] showed an upper
bound of 2.66013 by implementing the Super Harmonic Algorithm. The best
known upper bound of the competitive ratio for two dimensional bin packing
is 2.5545, which was given by Han et al. [9]. The best known lower bound is
1.907 [1].

For bounded space bin packing, Harmonic algorithm by Lee et al. [13] can
be applied for one dimensional case, the competitive ratio is 1.69103 when the
number of active bins goes to infinity. Csirik and Johnson [3] presented an 1.7-
competitive algorithm (K-Bounded Best Fit algorithms (BBFK)) for one di-
mensional bin packing using K active bins, where K ≥ 2. For multi-dimensional
case, Epstein et al. [5] gave a 1.69103d-competitive algorithm using (2M − 1)d

active bins, where M ≥ 10 is an integer such that M ≥ 1/(1−(1−ε)1/(d+2))−1,
ε > 0 and d is the dimension of the bin packing problem. For 1-space bounded
2-dimensional bin packing, Fujita [8] first gave an O((log logm)2)-competitive
algorithm, where m is the width of the square bin and the size of each item is
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a× b (a, b are integers and a, b ≤ m). Chin et al. proposed an 8.84-competitive
packing strategy [4], and the upper bound was further improved to be 5.155 [18],
they also gave the lower bound 3 for 1-space bounded two dimensional bin pack-
ing. If the item is restricted to be square, Zhang et al. [18] showed that the upper
bound and lower bound of the competitive ratio are 4.5 and 8/3, respectively.
For 1-space bounded d-dimensional bin packing (d can be any integer), a 4d-
competitive packing strategy was given in [19].

In the remaining part, 1-space bounded 2-dimensional bin packing is studied
in Section 2, both upper and lower bounds of the competitive ratio are given;
and in Section 3, we consider 1-space bounded square packing by showing the
upper and lower bounds.

2 1-Space Bounded 2-Dimensional Bin Packing

2.1 Upper bound

In this section, we give a 5.06-competitive algorithm for 1-space bounded 2-
dimensional bin packing, improving the previous upper bound 5.15. Since 90◦-
rotation is allowed, we may assume that for each rectangular item (w, h), the
width is no less than the height, i.e., w ≥ h.

We classify the rectangular items into three classes A, B and C according to
the width w:

A = {(w, h)|w > 1/2},
B = {(w, h)|1/8 < x ≤ 1/2}, and
C = {(w, h)|w ≤ 1/8}.

For simplicity, let A-item denote an item belonging to class A. B-item and C-
item are defined similarly.

Since all items are rectangular, in the packing strategy, items are packed
with sides either vertical or parallel to the boundary of the bin. For A-items, the
packing strategy pack them in the active bin using a top-down approach starting
from the upper boundary of the bin. Since the width of any A-item is strictly
larger than 1/2, any two A-items cannot share the same horizontal line within a
bin. The width of B-item and C-item are upper bounded by 1/2, in the packing
strategy, they are packed either in the left half side or in the right half side of the
bin by using a bottom-up approach starting from the lower boundary of the bin.
The heights of the left side and the right side are packed as balance as possible.
If an item cannot be packed into the bin using the strategy, the active bin will
be closed and a new one will be opened to pack this item.

Let the occupation ratio to be the utilization of some area in the bin. For an
A-item (w1, h1), since no other items share the same horizontal line in the bin,
the strip (1, h1) containing this A-item cannot be used to pack other item, thus,
the occupation ratio of this strip is w1·h1

1·h1
. Since the width of any A-item is larger

than 1/2, the occupation ratio of any strip containing A-item is strictly larger
than 1/2. For an B-item (w2, h2), since it is packed into either the left side or
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the right side, the strip (1/2, h2) containing this B-item cannot be used to pack
other item, thus, the occupation ratio of this strip is w2·h2

1/2·h2
. Since the width of

B-item is in between 1/8 and 1/2, the occupation ratio of any strip containing
B-item is at least 1/4. Note that C-item may be very tiny, if it is packed by
using the same way as for A-item or B-item, the wastage will be very large and
the performance will be bad.

We first consider how to pack C-items. The width of C-item is upper bounded
by 1/8, but it is not lower bounded by any positive value. C-items are classified
into subclasses C1, C2, C3, .... according to their widths. Let c1 = 1/8, ci = a·ci−1

for i > 1, where a = (6−
√
21)/15 < 1/9. We say

an item (w, h) belongs to subclass

{
C2i−1 if 3a · ci < w ≤ ci
C2i if a · ci < w ≤ 3a · ci

Thus, ci is the maximal width of items from subclass C2i−1 and 3a · ci is
the maximal width of items from subclass C2i. Each item belonging to subclass
C2i−1 and C2i (i > 0) can be packed into a row with height ci and width 1/2.
The items from subclasses C2i−1 are packed from left to right while the items
from subclass C2i are packed from right to left in three subrows (upper, middle
and lower), keeping the lengths of these three subrows balanced at all times (that
means a new item is always packed into the subrow with the shortest packed
length). Note that C-items are packed with a 90◦-rotation. Figure 1 depicts a row
with packed items from subclass C2i−1 and C2i. When handling an item from
subclass C2i−1 (or C2i), a new row of height ci will be created if the existing rows
with height ci cannot accommodate this item by the above packing method.

1/2

C2i−1 C2i

ci

upper subrow

middle subrow

lower subrow

Fig. 1. Packing C2i−1 (or C2i)-items (i > 0) into a row.

Consider the packing of C-items. If there are more than one rows for the
subclass C2i−1 and C2i, the last row could be almost empty and the non-last
rows are almost full. The total height of the last rows is at most∑

i>0

ci =
c1

1− a
=

1/8

1− (6−
√
21)/15

≈ 0.138.

Now we analyze the occupation ratio of the non-last rows for subclass C2i−1

and C2i. In the left side, suppose the occupied length is x, thus, the total occu-
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pation in the left side is at least

3a · ci · x.

In the right side, suppose the length of the longest occupied subrow is y1 and the
length of the shortest occupied subrow is y2, the total occupation in the right
side is at least

3a · ci · y2 + a · ci · (y1 − y2).

Since y1 − y2 ≤ 3a · ci (that is because the balanced packing in the right side),
the above formula is at least

3a · ci · y1 − 6a2 · c2i .

In the left side, the height of the item may be larger than 3a · ci. Using an
amortized analysis as follows, if packing an item (w, h) which belongs to subclass
C2i−1 will create a new row, this item contributes max{0, h2 − 3a · ci · h} to the
row which cannot pack it. If h > 3a · ci, the contribution of this item in the
newly created row is 3a · ci · h and the remaining area of this item is larger than
h2 − 3a · ci · h, which will contribute to the previous row.

Lemma 1. For any non-last row with height ci (i > 0), the amortized occupation
ratio is at least 1/4. (The proof is in Appendix.)

The packing strategy can be described as follows.

Algorithm Packing-Bin: for 1-space bounded 2-dimensional bin packing
1: A-items are packed in a top-down order starting from the top boundary of the bin.
2: B-items and C-items are packed in a bottom-up order along both the left and right

side of the square bin, keeping the heights of these two sides balanced at all times,
i.e., a new B-item or newly created row of C-item is always packed on the side
with smaller height.

3: If there is insufficient space to pack a new item (A-item, B-item) or create a new
row for the coming C-item, the bin is closed and a new bin is opened to pack the
new item or row.

An example of a packing configuration by applying the algorithm Packing-
Bin is illustrated in Figure 2. In this configuration, the height of the packed
A-items is y, the left and right sides of the packed B-items and C-items are
of height y1 and y2 respectively. In this example, y1 > y2, according to the
algorithm, if a B-item comes, we pack it in the right side.

Now we give the competitive ratio of the algorithm Packing-Bin.

Theorem 1. The competitive ratio of the packing strategy Packing-Bin is at
most 5.06. (The proof is in Appendix.)
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A-item B-item C-item

y

y1
y2

Fig. 2. Packing rectangular items into a square bin.

2.2 Lower bound

In this part, we prove that the lower bound of the competitive ratio is at least
3.167, improving the previous bound 3.

Theorem 2. The lower bound of the competitive ratio for 1-space bounded 2-
dimensional bin packing is at least 3.167.

Proof. Consider a sequence of items: S = {X1, X2, ..., X2n,A1, B1, A2, B2, ..., An, Bn,
T1, T2, ..., Tn}.

In the first part of the item sequence containing all the Xi items,

X2i−1 = (1/2 + i · ϵ, 1/2 + i · ϵ)
X2i = (1/2− (i− 1) · ϵ, 1/2− (i− 1) · ϵ)

in which ϵ = o(1/n2). It can be verified that no online algorithm can pack any
two consecutive items into one unit square bin because the sum of the edge
lengths of any two consecutive X-items is larger than 1. Thus, at least 2n bins
are used for packing all these Xi items. However X2i−1 and X2i+2 can be packed
into the same bin in the optimal packing.

In the second part of the item sequence containing all Ai and Bi items,

Ai = (1/3 + ϵ, 2/3 + ϵi+1)
Bi = (1/3 + ϵ, 1/3− ϵi)

in which ϵ = o(1/n2), ϵi < ϵi+1 for i ≥ 1, and 0 < ϵi = o(1/n2) for all i ≥ 1.
In the online fashion, Ai and Ai+1 cannot be packed into the same bin. Thus,
no online algorithm can pack the second part of the item sequence by using less
than n bins. However X2i−1, X2i+2, Ai, Bi+1 can be packed into one bin in the
optimal packing.

In the third part of the item sequence containing all Ti items,

Ti = (1, 1/7 + ϵ)
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in which ϵ = o(1/n2). It can be verified that any bin can contain at most 6 items
from this part. However, one Ti can be packed together with X2i−1, X2i+2, Ai,
Bi+1 in the optimal packing, as shown in Figure. 3.

X2i−1 X2i+2

Bi+1Ai

Ti

Fig. 3. The optimal packing

Combine these three parts, note that our focus is the asymptotic performance,
there is no online algorithm which can pack all items in this sequence within
2n+n+n/6 bins, while the optimal strategy only uses n bins. Thus, we conclude
that no online algorithm can achieve a competitive ratio less than 3.167 for 1-
space bounded 2-dimensional bin packing. ⊓⊔

3 1-Space Bounded Square Packing

In 1-space bounded square packing, the arrival items are squares with side length
no more than 1. In our packing strategy, square items are packed in bricks where
a brick is a rectangle with aspect ratio

√
2. Packing square items in bricks is a

popular used method. The interesting property of this method is: a brick can be
partitioned into two smaller congruent bricks of the same size. Thus, packing a
square into a brick can be done recursively. Given a square Q, let S(Q) denote
the smallest brick which can contain Q. Let |R| denote the area of rectangle R.

The following is a modified algorithm similar to [11] for packing a square Q
in a brick T .

Algorithm Brick(Q,T): Packing a square Q in brick T

1: If there is no empty brick in T of size greater than or equal to S(Q), then give up
packing Q in T .

2: Else pack Q in T as follows:
– if there is an empty brick congruent to S(Q), then pack Q into it;
– else partition the smallest empty brick P that is larger than S(Q) into two con-

gruent bricks P1 and P2. Assume P1 is the left (or the upper) one. Recursively
execute Brick(Q,P1).
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Lemma 2. [11] If the above algorithm cannot pack an item Q in a brick B,
then all empty bricks in B are smaller than S(Q). Furthermore, there is at most
one empty brick with area |S(Q)|/2i for each i = 1, 2, ..., and the total area of
the empty bricks is less than |S(Q)|.

Lemma 3. If Q is packed in a brick congruent to S(Q), then at least 1/(2
√
2)

of this brick is occupied. (The proof is in Appendix.)

3.1 Upper bound

A B

C

D

E

F

E ′

3
= (1/24,

√

2/24)

Fig. 4. Partition of unit bin.

We partition each unit bin as shown in Figure 4. Bricks A to F are of the same
size (1/3,

√
2/3), and each brick can be further partitioned into two congruent

bricks. We call an item small, middle, and large if the edge length ℓ satisfies
ℓ ≤ 1/3, 1/3 < ℓ ≤ 1/2, and ℓ > 1/2, respectively. There is a small brick
E′

3 = (1/24,
√
2/24) in the right-top of the bin. This brick is used only in some

special cases, which will be described in later analysis. The packing strategy is
described as follows.

Algorithm Packing-Square: For 1-space bounded square packing
1: For a small item s, by using the algorithm Brick(), we search A, B, C, D, E, F ,

in the listed order, for an S(s) to pack s. E.g., if Brick(s, A) cannot pack s, then
consider Brick(s, B).

2: For a middle item s, we search in the order of (1) the left-bottom corner of the bin;
(2) the right-bottom corner of the bin; (3) immediately to the left of the middle
item, which is packed on the right-bottom corner of the bin; (4) the right-top corner
of the bin; and (5) the left-top corner of the bin to pack item s. ◃ Note that
packing a middle item in the left-corner of the bin may overlap with bricks E and
F since the side length may be larger than

√
2/3. In this case, bricks E and F are

slightly shifted to the right such that there is no overlap with the packed middle
item.

3: For a large item s, we pack it at the right-bottom corner of the unit bin.
4: If item s cannot be packed into the active bin by using the above rules, this bin

will be closed then a new bin will be opened to pack s.
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Now we analyze the competitive ratio of the above algorithm. For a sequence
of square items, assume the offline optimal packing strategy uses n bins, and
our algorithm uses x + y + z bins, where x is the number of bins containing a
large item, y is the number of bins not containing large item and closed by the
packing of a large item, and z is the number of remaining bins. In the optimal
packing, a bin contains at most one large item, thus, x ≤ n. From the definition
of y, for each bin with large item, there is at most one previous bin counted in
those y bins, thus, y ≤ x.

By using the idea of amortized analysis, if the amortized occupation of those
x, y, and z items are a, b, and c, respectively, the total area of the sequence of
items is at least ax + by + cz, which is upper bounded by n since the optimal
packing uses n bins. Therefore, the competitive ratio is

max (x+ y + z)/n (1)

s.t. ax+ by + cz ≤ n and

y ≤ x ≤ n

In the amortized analysis, if there is a large item s with side length ℓ > 1/2 in
a bin, this item contributes ℓ2 − 1/4 to the previous bin and the remaining area
which contributes to its packed bin is 1/4; if a bin is closed by the packing of a
middle item s′ with side length 1/3 < ℓ′ ≤ 1/2, this item contributes (ℓ2−1/9)/2
to the previous bin, and the remaining area which contributes to its packed bin
is ℓ2 − (ℓ2 − 1/9)/2 = ℓ2/2 + 1/18 ≥ 1/9.

For those x bins containing large items, the remaining area is at least 1/4.
Thus, we may set a = 1/4.

For those y bins, they are closed by the packing of large items. The following
lemma analyzed the amortized occupation in this part of bins.

Lemma 4. The amortized occupation in those y bins is at least (10 − 6
√
2)/9.

(The proof is in Appendix.)

Thus, b = (10− 6
√
2)/9 ≈ 0.1683.

Now we give the amortized occupation for the remaining z bins.

Lemma 5. The amortized occupation in those z bins is at least 1/4. (The proof
is in Appendix.)

Thus, c = 1/4.

Next, we give the competitive ratio of the algorithm Packing-Square.

Theorem 3. The competitive ratio of the algorithm Packing-Square is at most
4.3268.

Proof. Taking the values of a, b, and c into Formula (1),

max (x+ y + z)/n (2)

s.t. x/4 + 0.1683y + z/4 ≤ n and

y ≤ x ≤ n
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Therefore,
(x+ y + z)/4 ≤ n+ 0.0817y ≤ 1.0817n.

The competitive ratio of the packing strategy is at most

x+ y + z

n
≤ 1.0817 · 4 = 4.3268

⊓⊔

3.2 Lower bound

Now we derive a lower bound of the competitive ratio for 1-space bounded square
packing. Roughly speaking, the adversary sends items in phases.

– In the first phase, the side lengths of the coming items are very close to 1/2.
– In the second phase, the side lengths of the items are very close to 1/3.
– ...

The high level idea underlying the lower bound proof is as follows: The adversary
constructs a sequence with 2n items in the first phase, 3n items in the second
phase, ... such that no online packing algorithm can use less than 2n bins for
the first phase, 3n/4 bins for the second phase, ... But for the optimal packing
strategy, n bins is sufficient to pack all items.

Theorem 4. There is no online algorithm with a competitive ratio less than
2.75 for 1-space bounded square packing.

Proof. As mentioned above, the adversary sends items in phases. In the first
phase, the item sequence is (Y1, X1, Y2, X2, ..., Yn, Xn). Let ϵ = o(1/n2). Let yi
and xi denote the side length of Xi and Yi, respectively. The side lengths of
these items are as follows.

yi = 1/2− (n+ 1− i)ϵ

xi = 1/2 + (n+ 2− i)ϵ

It can be verified that any two adjacent items cannot be packed into one bin.
Thus, no online algorithm can pack these items by using less than 2n bins.
However, items Yi and Xi+1 can be packed into the same bin by the optimal
strategy.

In the second phase, the adversary sends 3n items, the arrival order is (U3, U4,
W1, W2, U5, U6, W3, W4, ...Un−1, Un, Wn−3, Wn−2, U1, U2, V1, V2, ...,Vn, Wn−1,
Wn). Let ui, vi, and wi denote the side length of Ui, Vi, and Wi, respectively.
Let ϵ ≪ ϵ1, ϵi < ϵi+1 for i ≥ 1, ϵ2i+1 > ϵ2i−1+ϵ2i+2ϵ for i ≥ 1, and ϵi = o(1/n2)
for any i. The side lengths of these items are as follows.

ui = 1/3 + ϵi
vi = 1/3 + ϵ
wi = 1/3− ϵ− ϵi
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It can be verified that except (Un, Wn−3, Wn−2, U1, U2, V1) and (Vn, Vn, Vn,
Wn−1, Wn)), any adjacent five items cannot be packed into the same bin. Since
we consider the asymptotic performance, i.e., n is very large, no online algorithm
can pack these items by using 3n/4 bins. However, items Ui, Vi, and Wi can be
packed together with Yi and Xi+1.

After the second phase, any online algorithm uses at least 2n + 3n/4 bins,
while the optimal packing strategy only uses n bins. Thus, the competitive ratio
is at least 2.75. ⊓⊔

Yi Xi+1

WiViUi

Fig. 5. The optimal packing

For the above item sequence, the optimal packing in a bin is shown in Fig-
ure. 5. There are still some free space in the upper part of the optimal packing.
We can fully utilize these free space to force the online algorithm uses more bins.
In the optimal packing, the height of the empty part is around 1/6. The adver-
sary may design another phase with 7n items whose side lengths are around 1/7,
such that no consecutive 37 items can be packed into the same bin, thus, 7n/36
bins are needed for the online packing. In the optimal strategy, 7 item can be
packed into the upper part of the optimal packing as shown in Figure. 5. Thus,
we have the following claim.

Claim. There is no online algorithm with a competitive ratio less than 2.94 for
1-space bounded square packing.
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Appendix.

A.1 The proof for Lemma 1

Proof. Consider the packing configuration as shown in Figure 1. As mentioned
before, x is the length of the left occupied area, y1 and y2 are the maximal and
minimal lengths of the right occupied subrows.

To show the amortized occupation ratio, we study two cases.

– If this configuration cannot accommodate the next item (w, h) from subclass
C2i−1, we have x+ y1 + h > 1/2 and h ≤ w ≤ ci. The amortized occupation
in this row is at least

3a · ci · x+ 3a · ci · y1 − 6a2 · c2i +max{0, h2 − 3a · ci · h}.

• If h ≤ 3a · ci, the amortized occupation is at least

3a · ci · x+ 3a · ci · y1 − 6a2 · c2i
> 3a · ci · (1/2− h)− 6a2 · c2i
≥ 3a · ci(1/2− 3a · ci)− 6a2 · c2i
= 3/2 · a · ci − 15a2 · c2i

Since the area of this row is ci/2, the amortized occupation ratio in this
case is

3a− 30a2 · ci ≥ 3a− 15a2/4 = 1/4.

• If h > 3a · ci, the amortized occupation is at least

3a · ci · x+ 3a · ci · y1 − 6a2 · c2i + h2 − 3a · ci · h
> 3a · ci · (1/2− h)− 6a2 · c2i + h2 − 3a · ci · h
= h2 − 6a · ci · h+ 3/2 · a · ci − 6a2 · c2i
= (h− 3a · ci)2 + 3/2 · a · ci − 15a2 · c2i
≥ 3/2 · a · ci − 15a2 · c2i

Since the area of this row is ci/2, the amortized occupation ratio in this
case is

3a− 30a2 · ci ≥ 3a− 15a2/4 = 1/4.

– If this configuration cannot accommodate the next item (w, h) from subclass
C2i, we have x+y2+h > 1/2 and h ≤ w ≤ 3a ·ci. The amortized occupation
in this row is at least

3a · ci · x+ 3a · ci · y1 − 6a2 · c2i .

From previous analysis, we know the ratio between this value and ci/2 is at
least 1/4.

Combine the above two cases, the amortized occupation ratio of the non-last
row for C-items is at least 1/4. ⊓⊔



14 Authors Suppressed Due to Excessive Length

A.2 The proof for Theorem 1

Proof. For a given sequence of items, suppose the number of bins used by the
packing strategy Packing-Bin is n. Let oiA, o

i
B and oiC be the occupied space of

A-, B- and C- items in the i-th bin respectively. The average occupation for all
the bins is

∑n
i=1(o

i
A + oiB + oiC)/n.

Consider the packing configuration of the i-th bin as shown in Figure 2,
assume that the height of the packed A-items is y, the left and right sides of
the packed B-items and C-items are of height y1 and y2 respectively. W.l.o.g.,
y1 ≥ y2. We have

oiA ≥ y/2
oiB ≥ (y1 + y2 −

∑
j≥1 cj −m)/8 ≥ (y1 + y2 − 0.138−m)/8

oiC ≥ m/8

where m is the total height of the non-last rows of C-items.
In the following amortized analysis, if an A-item or an B-item cannot be

packed into the active bin by the packing algorithm, this item will contribute
some area to the just recently closed bin. For the i-th bin, let qiA and qiB be the
contribution of A-items and B-items to the (i−1)-th bin, and piA and piB be the
remaining areas of A-items and B-items in the i-th bin. Formally, if an A-item
(w, h) cannot be packed into the i-th bin,

qiA =
w · h
2

;

if an B-item (w, h) cannot be packed into the i-th bin,

qiB =

{
w · h/2 if 1/4 ≤ h < 1/2
h2 − h/8 if 1/8 ≤ h < 1/4

For this item, the remaining area is{
w · h/2 ≥ h/8 if 1/4 ≤ h < 1/2
w · h− h2 + h/8 ≥ h/8 if 1/8 ≤ h < 1/4

Since we focus on the asymptotic performance, when n is very large, we have∑n
i=1(o

i
A + oiB + oiC)

n
≥ min

1≤i<n
{piA + piB + oiC + qi+1

A + qi+1
B } (3)

– If the next A-item with height u cannot be packed into this bin, we have
y + y1 + u > 1 and qi+1

A ≥ u/4. Thus,
• If y1 − y2 ≤ 1/4, the amortized occupation in this bin is at least

piA + piB + oiC + qi+1
A + qi+1

B

≥ y/4 + (y1 + y2 − 0.138−m)/8 + u/4 +m/8
≥ y/4 + (y1 + y2)/8 + u/4− 0.01725
> (1− y1)/4 + (y1 + y2)/8− 0.01725
= 0.23275− (y1 − y2)/8
≥ 0.2015
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• If y1 − y2 > 1/4, that means the top item in the bottom-left occupied
area is an B-item (w′, h′), which may be the first item in this bin. Thus,
qiB = w′ ·h′/2 and piB = oiB−qiB ≥ (y1+y2−0.138−m−h′)/8+w′ ·h′/2.
Let h′ = y1 − y2 + x, where x ≥ 0. Note that w′ ≥ h′ ≥ y1 − y2 > 1/4,
we have

piB ≥ (y1 + y2 − 0.138−m− h′)/8 + w′ · h′/2
= (y2 + y2 − 0.138−m)/8 + w′ · (y1 − y2)/2 + w′ · x/2− x/8
> (y2 + y2 − 0.138−m)/8 + (y1 − y2)

2/2

It follows that

piA + piB + oiC + qi+1
A + qi+1

B

≥ y/4 + (y2 + y2 − 0.138−m)/8 + (y1 − y2)
2/2 + u/4 +m/8

= (y + u)/4 + y2/4− 0.01725 + (y1 − y2)
2/2

> (1− y1)/4 + y2/4− 0.01725 + (y1 − y2)
2/2

= 0.23275 + (y1 − y2)
2/2− (y1 − y2)/4

≥ 0.2015

– If the next B-item (w, h) cannot be packed into this bin, we have y+y2+h >
1.

• If h ≥ 1/4, then qi+1
B = w · h/2 ≥ h2/2. Thus

piA + piB + oiC + qi+1
A + qi+1

B

≥ y/4 + (y1 + y2 − 0.138−m)/8 + h2/2 +m/8
= y/4 + (y1 + y2)/8 + h2/2− 0.01725
≥ y/4 + y2/4 + h2/2− 0.01725
> (1− h)/4 + h2/2− 0.01725
≥ 0.2015

• If h < 1/4, then qi+1
B = h2 − h/8. Thus,

piA + piB + oiC + qi+1
A + qi+1

B

≥ y/4 + (y1 + y2 − 0.138−m)/8 +m/8 + (h2 − h/8)
= y/4 + (y1 + y2)/8− 0.01725 + (h2 − h/8)
≥ y/4 + y2/4− 0.01725 + (h2 − h/8)
> (1− h)/4− 0.01725 + (h2 − h/8)
≥ 0.1976

– If the next C-item with height u cannot be packed into this bin, as the height
of each row of C-item is at most 1/8, we have y + y2 + 1/8 > 1. Thus,

piA + piB + oiC + qi+1
A + qi+1

B

≥ y/4 + (y1 + y2 − 0.138−m)/8 +m/8
= y/4 + (y1 + y2)/8− 0.01725
≥ y/4 + y2/4− 0.01725
> (1− 1/8)/4− 0.01725
= 0.2015
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Combining all of the above cases, the amortized occupation in each bin is
at least 0.1976, thus, the competitive ratio of this packing strategy is at most
1/0.1976 = 5.06. ⊓⊔

A.3 The proof for Lemma 3

Proof. Suppose an item Q is packed into a brick R = (r, r/
√
2) which is congru-

ent to S(Q). Since R is the smallest brick to pack Q, the side length of Q is at
least r/2. Thus, at least 1/(2

√
2) of this brick is occupied.

A.4 The proof for Lemma 4

Proof. W.l.o.g., assume that the i-th bin does not contain large item and closed
by the packing of a large item s with side length ℓ > 1/2.

– If ℓ ≥ 2/3, the amortized occupation of the i-th bin is at least (2/3)2−1/4 =
7/36.

– Else, 1/2 < ℓ < 2/3 and packing s on the right-bottom corner of the i-th
bin will overlap with some packed item in C or D. If packing s on the right-
bottom corner of the i-th bin overlaps with a middle item s′ with side length
1/3 < ℓ′ ≤ 1/2 which is packed on the left-bottom corner of the bin, the
amortized occupation in this bin is at least

ℓ′
2 − (ℓ′

2 − 1/9)/2 + ℓ2 − 1/4

= ℓ2 + ℓ′
2
/2− 7/36

≥ ℓ2/2 + (ℓ+ ℓ′)2/4− 7/36
≥ 1/8 + 1/4− 7/36
= 13/72

since ℓ+ ℓ′ > 1 and s′ may lead the close of the previous bin.
– If pack s on the right-bottom corner of the i-th bin overlaps with a middle

item which is also packed in the right-bottom corner of this bin. In this
case, at least one small item or middle item is packed in C. If a small item
is packed in C, the total occupation of small items in this bin is at least
1/9 since both A and B cannot pack this small item. Thus, the amortized
occupation is at least 2/9.

– Else, if packing s on the right-bottom corner of the bin overlaps with a small
item in C or D, the side length ℓ of s satisfies ℓ > 1 −

√
2/3. From the

packing strategy, the side length ℓ′ of the overlapped small item s′ is no
more than

√
2/6 since ℓ < 2/3 in this case. Thus, the overlap must happens

in the right part of C or D, in another words, A, B, and the left part of C
or D cannot pack the item s′ with side length ℓ′ <

√
2/6. From Lemma 4,

the total area of free bricks in A, B, and the left part of C or D is less than
|S(s′)| =

√
2/18. From Lemma 5, the total occupied area in this bin is at

least

|A|+ |B|+ |C|/2− |S(s′)|
2
√
2

+ ℓ′
2 ≥ |A|+ |B|+ |C|/2

2
√
2

= 5/36.
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By adding the contribution from the item s, the amortized occupation in
this bin is at least

5/36 + (1−
√
2/3)2 − 1/4 = (10− 6

√
2)/9.

– Else, if packing s on the right-bottom corner of the bin overlaps with a small
item s′ with side length ℓ′ < 1/3 in E or F , similar to the above analysis, A,
B, C and D cannot pack item s′. From Lemma 5, the total occupied area in
this bin is at least

|A|+ |B|+ |C|+ |D| − |S(s′)|
2
√
2

≥ 2/9.

Combining the above cases, the amortized occupation in those y bins is at
least (10− 6

√
2)/9. ⊓⊔

A.5 The proof for Lemma 5

Proof. Now we consider the amortized occupation in the remaining z bins.
W.l.o.g., assume that the j-th bin belongs to those z bins, and it is closed by
the packing of an item s with side length ℓ.

– If ℓ ≤ 1/3, i.e., s is a small item. From the packing strategy, since s cannot
be packed into this bin, bricks A, B, C, D, E, and F are all occupied by
some items and cannot pack s. From Lemma 4 and Lemma 5, similar to
previous analysis, the total occupation in this bin is at least

|A|+ |B|+ |C|+ |D|+ |E|+ |F | − |S(s)|
2
√
2

≥ 5/18

– Else, 1/3 < ℓ ≤ 1/2, i.e., s is a middle item.
• If there are 3 middle items packed in this bin, the occupied area is at

least 1/3.
• Else, if there are 2 middle items packed in this bin,

∗ if the side length ℓ′ of one middle item s′ is no less than
√
2/3,

the amortized occupation is at least (1/3)2 + ℓ′
2 − (ℓ′

2 − 1/9)/2 =

ℓ′
2
/2 + 1/6 ≥ (

√
2/3)2/2 + 1/6 = 5/18.

∗ else, two corners of this bin are occupied by middle items, and two
bricks congruent with (1/3,

√
2/3) are available for small items. Since

the middle item s cannot be packed in this bin, all four corners of
this bin are occupied by items. From Lemma 4 and Lemma 5, the
occupied area of the small items in this bin is at least 1/18. Since the
contribution of each middle item is at least 1/9, thus, in this case,
the amortized occupation is at least 5/18.

• Else, if there is one middle item s′ with side length ℓ′ packed in this bin,
this item must be packed either in the left-bottom corner of this bin, or
in the right-bottom corner of this bin. Otherwise, the order A, B, C, D,
E, and F for packing small items is violated.
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Lemma 6. If there is a middle item s′ with side length ℓ′ packed in the
left-bottom corner of this bin, the amortized occupation in this bin is at
least 1/4.

Proof. In this case, packing s in the right-bottom corner overlaps with
some packed small item in E. Thus, the total area of small items in this
bin is at least 1/9.
∗ If ℓ′ >

√
2/3, the amortized occupation in this bin is at least

1/9 + ℓ′
2 − (ℓ′

2 − 1/9)/2 = ℓ′
2
/2 + 1/6 ≥ 5/18.

∗ Else, s is packed within C and D, the contribution in this bin is at
least 1/9.
· If packing s into this bin overlaps with a small item s′′ in E
whose side length ℓ′′ satisfies

√
2/6 ≤ ℓ′′ ≤ 1/3, the occupied

area in A + B is at least 1/18. In this case, ℓ + ℓ′′ > 2/3. The
amortized occupation in this bin is at least

1/18 + ℓ′′
2
+ (ℓ2 − 1/9)/2 + ℓ′

2 − (ℓ′
2 − 1/9)/2

= 1/18 + ℓ′′
2
+ ℓ2/2 + ℓ′

2
/2

≥ ℓ′′
2
+ (2/3− ℓ′′)2/2 + ℓ′

2
/2 + 1/18

= 3(ℓ′′ − 4/9)2/2 + ℓ′
2
/2 + 11/54

≥ 5/18 (since
√
2/6 ≤ ℓ′′ ≤ 1/3)

· If packing s into this bin overlaps with a small item s′′ in E
whose side length ℓ′′ satisfies 1/6 ≤ ℓ′′ ≤

√
2/6, the occupied

area in A + B is at least 1/12. In this case, ℓ + ℓ′′ > 2/3. The
amortized occupation in this bin is at least

1/12 + ℓ′′
2
+ (ℓ2 − 1/9)/2 + ℓ′

2 − (ℓ′
2 − 1/9)/2

= 1/12 + ℓ′′
2
+ ℓ2/2 + ℓ′

2
/2

≥ (2/3− ℓ)2 + ℓ2/2 + ℓ′
2
/2 + 1/12

= 3(ℓ− 4/9)2/2 + ℓ′
2
/2 + 25/108

≥ 31/108

· If packing s into this bin overlaps with a small item s′′ in the
left-bottom part of E and the side length ℓ′′ satisfies

√
2/12 ≤

ℓ′′ < 1/6, the occupied area in A, B, and the left-upper part of
E is at least 1/9. In this case, ℓ+ ℓ′′ > 1−

√
2/3. The amortized

occupation in this bin is at least

1/9 + ℓ′′
2
+ (ℓ2 − 1/9)/2 + 1/9

= ℓ′′
2
+ ℓ2/2 + 1/6

> ℓ′′
2
+ (1−

√
2/3− ℓ′′)2/2 + 1/6

= 3(ℓ′′ − (1−
√
2/3)/3)2/2− 3((

√
2/3− 1)/3)2/2 + 7/9−

√
2/3

≥ 0.2599
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diagonal

E

E1

E2
E3

Fig. 6. overlap in brick E

· If packing s into this bin overlaps with a small item s′′ with side
length ℓ′′ <

√
2/12,

Case 1: the overlap happens in E1 as shown in Figure. 6. The
total occupation of small items in this bin is at least 1/8. In this
case, ℓ > 1 −

√
2/3 −

√
2/12, thus, the contribution from s is

ℓ2/2 − 1/18 ≥ 0.0288. Therefore, the amortized occupation in
this bin is at least 0.288 + 1/8 + 1/9 = 0.2649.
Case 2: the overlap happens in E2 as shown in Figure. 6. The
total occupation of small items in this bin is at least 78/576. In
this case, ℓ > 1 −

√
2/3 −

√
2/12 −

√
2/24 ≈ 0.3518, and the

contribution from s is at least 0.35182/2− 1/18 = 0.0063. Thus,
the amortized occupation in this bin is at least 0.0063+78/576+
1/9 = 0.2529.
Case 3: Note that there is a brick E′

3 in the right-top of this bin,
and E3 and E′

3 are congruent bricks. In the packing strategy, if
there is small items with side length no more than 1/24 to be
packed into E3, we use E

′
3 to pack this item. Thus, if E3 contains

some item, the side length of this item must be strictly larger
than 1/24, and the total occupation of small items in this bin is at
least 5/36. If some small items are packed in the right part of E,
the occupation of small items is strictly larger than 5/36. Thus,
the amortized occupation in this bin is at least 5/36+1/9 = 1/4.

⊓⊔

Lemma 7. If there is a middle item packed in the right-bottom corner
of this bin, the amortized occupation in this bin is at least 19/72.

Proof. In this case, some small item must be packed in C. From Lemma
4 and Lemma 5, the total occupation of small items in this bin is at least
1/9.

∗ If packing s into this bin overlaps with a small item s′′ in C whose
side length ℓ′′ satisfies

√
2/6 ≤ ℓ′′ ≤ 1/3, the occupied area in A+B

is at least 1/18. In this case, ℓ+ ℓ′′ > 2/3. The amortized occupation
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in this bin is at least

1/18 + ℓ′′
2
+ (ℓ2 − 1/9)/2 + ℓ′

2 − (ℓ′
2 − 1/9)/2

= 1/18 + ℓ′′
2
+ ℓ2/2 + ℓ′

2
/2

≥ ℓ′′
2
+ (2/3− ℓ′′)2/2 + ℓ′

2
/2 + 1/18

= 3(ℓ′′ − 4/9)2/2 + ℓ′
2
/2 + 11/54

≥ 5/18 (since
√
2/6 ≤ ℓ′′ ≤ 1/3)

∗ If packing s into this bin overlaps with a small item s′′ in C whose
side length ℓ′′ satisfies 1/6 ≤ ℓ′′ ≤

√
2/6, the occupied area in A+B

is at least 1/12. In this case, ℓ+ ℓ′′ > 2/3. The amortized occupation
in this bin is at least

1/12 + ℓ′′
2
+ (ℓ2 − 1/9)/2 + ℓ′

2 − (ℓ′
2 − 1/9)/2

= 1/12 + ℓ′′
2
+ ℓ2/2 + ℓ′

2
/2

≥ (2/3− ℓ)2 + ℓ2/2 + ℓ′
2
/2 + 1/12

= 3(ℓ− 4/9)2/2 + ℓ′
2
/2 + 25/108

≥ 31/108

∗ If packing s into this bin overlaps with a small item s′′ in the left-
bottom part of C whose side length ℓ′′ satisfies ℓ′′ < 1/6, the occupied
area of small items in this bin is at least 1/8. In this case, ℓ + ℓ′ >
1−

√
2/6. The amortized occupation in this bin is at least

1/8 + (ℓ2 − 1/9)/2 + ℓ′
2 − (ℓ′

2 − 1/9)/2

= 1/8 + ℓ2/2 + ℓ′
2
/2

≥ 1/8 + (ℓ+ ℓ′)2/4

≥ 1/8 + (1−
√
2/6)2/4

= (14− 3
√
2)/36

∗ If packing s into this bin overlaps with a small item s′′ in the right-
bottom part of C whose side length ℓ′′ satisfies ℓ′′ < 1/6, the occupied
area of small items in this bin is at least 11/72. The contribution of
packed middle item s′ is at least 1/9. Thus, the amortized occupation
in this bin is at least 11/72 + 1/9 = 19/72.

⊓⊔

• Else, if there is no middle item in this bin, from the order of packing small
items, we can say that A, B, C, D, and E are all occupied by some small
items. Similar to the proof in Lemma 6, the amortized occupation in this
bin is at least 1/4.

Combine the above cases, the amortized occupation in each of those z bins is at
least 1/4. ⊓⊔


